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Abstract: - The multiple vehicle routing problem (MVRP) with the time constraint is one of the most important 
real-world problems in industrial and logistic engineering. The MVRP problems can be considered as a class of 
the non-polynomial (NP) time-complete combinatorial optimization problem. Such the MVRP problems aim to 
find the set of routes with the shortest total distance for overall minimum route cost serving all the given 
demands by the fleet of vehicles. Based on modern optimization, the MVRP problems can be optimally solved 
by the potential metaheuristic optimization techniques. The flower pollination algorithm (FPA) is one of the 
most efficient metaheuristic optimizers proposed for solving the combinatorial optimization problems. With 
few searching parameters, the algorithm of the FPA is not complex and ease of use. In this paper, the FPA is 
applied to solve five selected benchmark MVRP problems with the time constraints consisting of 50-100 
destinations. Results obtained by the FPA will be compared with those obtained by genetic algorithm (GA), tabu 
search (TS) and particle swarm optimization (PSO). From results, the FPA can provide optimal solutions of all 
five selected problems. Optimal results obtained by the FPA are superior to PSO, TS and GA, respectively, 
with shorter total distance and computational time consumed. 
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1 Introduction 
In the 1800s, the traveling salesman problem (TSP) 
was firstly lunched by Hamilton and Kirkman [1-7]. 
The TSP is the classic algorithmic problem in 
computer science, operations research and logistics 
engineering. Its objective is to seek for the optimal 
tour such that to visit n cities exactly once and then 
return to the home city. The optimal tour is defined 
as the tour having the minimum total distance. 
Mathematical speaking, the multiple traveling 
salesman problem (MTSP) is a generalization of the 
TSP [8] which is the distinctively non-polynomial 
(NP) time-complete problem [9],[10]. The MTSP is 
more difficult than TSP. In the MTSP, m > 1 
salesmen are allowed. From a set of cities, the home 
city (or depot) are initially located. The pairwise 
distance matrix of n cities are performed. The 
objective of the MTSP is to find a route for each 
salesman for minimizing the total cost of the routes. 
In addition, each city is visited exactly once by any 
salesmen [8-12]. 

Several algorithms have been consecutively 
launched for solving the TSP, for example, branch-
and-bound [13] and integer linear programming 
[14]. Metaheuristic optimizers have been accepted 

and applied for solving TSP, for example, simulated 
annealing (SA) [15], cutting planes [16], neural 
network (NN) [17], tabu search (TS) [18], genetic 
algorithms (GA) [19], particle swarm optimization 
(PSO) [20] and cuckoo search (CS) [21]. Many 
recent studies have been proposed by using 
metaheuristic optimizers to solve the MTSP. Some 
of the well-known optimizers are the GA [22], 
evolutionary algorithm (EA) [23], NN [24], TS [25] 
and ant colony optimization (ACO) [26]. 

The multiple vehicle routing problem (MVRP) 
expands the MTSP [11],[12] to include different 
service requirements at each node (city or 
destination), different capacities and time 
constraints of each vehicle in the fleet. The 
objective of MTSP problems is to minimize total 
cost (distance) across all routes. Based on graph 
theory, the MVRP consists of a fleet of vehicles 
leaving from the home city and returning to the 
home city. Each location will be visited exactly 
once by any vehicle in a fleet [11],[12],[27].  If the 
capacity limitations are neglected, the MTSP is 
assumed as a relaxation of the MVRP. This means 
that all formulations of the MVRP can be applied 
for MTSP for seeking a set of the optimal routes 
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with the minimum cost serving all the given 
demands by the fleet of vehicles. 

Following the literatures, the flower pollination 
algorithm (FPA) proposed by Yang in 2012 [28] is 
one of the most efficient metaheuristic optimizers. 
The FPA algorithm is based on the behaviour of 
pollination of flowering plant in nature. A random 
number with the Lévy flight distribution is applied 
in the FPA algorithm as the pollinators’ movement 
to generate the elite solution within the defined 
search space. The performance tests of the FPA 
against several benchmark functions were reported 
[29],[30]. Also, the FPA was successfully conducted 
to optimize many real-world engineering problems 
including power system optimization (economic and 
emission dispatch [31],[32], reactive power dispatch 
[33], optimal power flow [34], solar photovoltaic 
(PV) parameter estimation [35] and load frequency 
control [36]), communication system optimization 
(wireless sensor networks [37] and linear antenna 
array optimization [38]), civil engineering system 
optimization (frames and truss systems [39] and 
structure engineering design [40]), image processing 
optimization [41], transportation optimization (TSP 
[42]), control system optimization (control system 
design [43-45] and model identification [46]) and 
hybrid renewable energy saving optimization [47]. 
Readers can find the state-of-the-art developments 
and significant applications of the FPA in [48],[49].  

The objective of this paper is to apply the FPA 
for solving the MVRP problem with the time 
constraint. In order to perform its effectiveness, the 
FPA is applied against five selected benchmark 
MVRP problems from literatures. This paper 
consists of five sections. In the section 2, the 
problem formulation including VRP and MVRP 
models and details of selected benchmark problems 
are illustrated. Section 3 describes the FPA 
algorithm and the FPA-based MVRP optimization. 
In section 4, results obtained are discussed. Finally, 
section 5 gives the conclusions and future research.   

 
 

2 Problem Formulation 
2.1 VRP and MVRP Models 
Mathematical speaking, the VRP problem is 
modelled by the graph theory [1-7]. Let G = (V, E) 
be a complete undirected graph with vertices V, |V| = 
n, where n is the number of cities, m is the number 
of vehicles and edges E with edge length cij for the-
ij city (i, j). This work focus on the symmetric 
VRP/TSP case in which cij = cji, for all cities (i, j), 
where cij is the cost associated to the distances 

between the i-th and j-th nodes, and cm stands for the 
cost of the involvement of one vehicle.  

As the constrained optimization problem 
regarding to modern optimization context, the VRP 
problem is defined for minimization as shown in 
(1)-(5). f(•) in (1) is the objective function as the 
total distant for traveling. The objective function f(•) 
will be minimized according to the constraint 
functions shown in (2) – (5). The constraint function 
in (2) is used for ensuring that each city will be 
entered from only one other city. The constraint 
function in (3) is conducted for ensuring that each 
city is only departed to on other city. The constraint 
function in (4) is utilized for eliminating the sub-
tours. The constraint function in (5) is used for 
selecting the feasible solutions. If edge (i, j) is one 
of the feasible solutions, xij = 1. Otherwise, xij = 0. 
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By literatures, there are several ways to 

generalize the MVRP problem. In case of the single 
depot [50-52], there are n cities, m vehicles and a 
distance metrix d:nn

 
of all cities. All vehicles 

will start at the home city-1 (or depot). They will 
take a route such that each city is visited by exactly 
one vehicle ultil all vehicles in the fleet return to the 
depot at the end of the tour. If vehicle k travels from 
city i to city j, i,j,k  = 1. Otherwise, i,j,k  = 0. Also, 
let Ti,j,k  be the traveling time of the vehicle k from 
city i to city j. Ti,j,k  can be calculated by the relation 
between the average vehicle’s speed and the its 
working time, and Tmax is the maximum working 
time of each vehicle. The objective of the MVRP 
problem is to minimize the total traveling distances 
as stated in (6). 
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The constraint function in (7) ensures that every 

vehicle leaves the depot exactly once. The constraint 
function in (8) guarantees that every vehicle returns 
to the depot exactly once. The constraint function in 
(9) ensures that every non-depot city is left exactly 
once. The constraint function in (10) guarantees that 
all vehicle combined return only once to each non-
depot city. The constraint function in (11) ensures 
that the number of times a vehicle visits a non-depot 
city equals the number of times that city is left. The 
constraint function in (12) ensures that no subtours 
exist (degenerate routes that do not include the 
depot), using n – 1 as dummy variables of u2,...,un. 
Finally, the constraint function in (13) is the time 
constraint ensuring that each vehicle works within 
its maximum working time. 

 
2.2 Selected VRP Problems 
In this work, five benchmark problems consisting of 
50-100 destinations from literatures are selected 
[53],[54]. Deatials of five benchmark problems 
including prppblem names, numbers of destinations 
(or city) and their optimal solutions are summarized 

in Table 1. The destination (or city) locations and 
distance matrix of Entry#1 (Eil51) are plotted in 
Fig. 1 and Fig. 2 to desplay their locations as an 
example. From the distance matrix in Fig. 2, it can 
be observed that the Entry#1 (Eil51) possesss the 
symmetric distance between city i and j. 
 
Table 1 Selected Problems for MVRP optimization. 

Entries Names 
Number  
of Cities 

Optimal 
Solutions (Km.) 

Entry#1 Eil51 51 426 
Entry#2 Birlin52 52 7,542 
Entry#3 St70 70 675
Entry#4 Rat99 99 1,211 
Entry#5 Rd100 100 7,910 

 

 

Fig. 1 Destination locations of Entry#1 (Eil51). 
 

 

Fig. 2 Distance matrix of Entry#1 (Eil51). 

 

3 FPA-Based VRP Optimization 
3.1 FPA Algorithms 
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The pollination of flowering plants in nature is for 
survival and reproduction. Flower pollination in 
nature can be classified as the self-pollination and 
cross-pollination. The flower pollination process can 
be done by both of biotic and abiotic pollinators. 
There is about 80-90% of flower pollination using 
biotic pollinators for long-distant pollination from a 
particular plant to other plants called the cross-
pollination [55]. Therefore, the cross-pollination 
using biotic pollinators is regarded as the global 
pollination. On the other hand, there is about 10-
20% of flower pollination using abiotic pollinators 
for short-distant pollination in a same flower or 
from a particular flower to other flowers in the same 
plant called the self-pollination [55]. Therefore, the 
self-pollination using abiotic pollinators is regarded 
as the local pollination [55-57]. The FPA algorithm, 
firstly proposed by Yang in 2012 [28], mimics the 
flower pollination in nature by using four rules as 
follows. 

Rule-1:  For global pollination (cross-pollination 
with biotic pollinators), a random with 
the Lévy-flight distribution is utilized for 
generating new solutions. 

Rule-2:  For local pollination (self-pollination 
with abiotic pollinators), a random with 
the uniform distribution is conducted 
utilized for generating new solutions. 

Rule-3:  Flower constancy, which is equivalent to 
the reproduction probability, can be 
developed by pollinators. All flower 
constancy is assumed to similarity. 

Rule-4:  Switching between local and global 
pollinations is controlled by a switch 
probability p ∈ [0, 1]. 

For the FPA algorithm proposed by Yang [28], a 
solution xi is any flower (or pollen gamete). 
Regarding to the global pollination in Rule-1, biotic 
pollinators are used with Lévy-flight random for 
long-distant pollination. With Rule-1 and Rule-3, 
new solutions can be formulated as stated in (14), 
where g* is the current best solution at the current 
generation/iteration t. L is a random with the Lévy-
flight distribution which can be calculated by (15), 
where () is the standard Gamma function. 

Regarding to the local pollination in Rule-2, 
abiotic pollinators are used with uniformly random 
for short-distant pollination. With Rule-2 and Rule-
3, new solutions can be formulated as stated in (16), 
where xj and xk are selected solution at the current 
generation/iteration t.  is a random with the 
uniform distribution which can be calculated by 
(17), where a and b are boundaries of random.  
Regarding to Rule-4, selecting between local and 

global pollinations can be controlled by a switch 
probability p. 

Fig. 3 shows the flow diagram of the FPA 
algorithm. From Yang’s recommendation [28-30], 
the number of flowers n = 25-50 and the switching 
probability p = 0.15-0.25 are suitable for most 
applications. 
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- Find the best solution g* among the initial 
   population via  f(x) 
- Define a proximity probability p  [0, 1]

- Draw a step vector L  
   via Lévy flight in (15)
- Activate cross- 
   pollination in (14)
   for generating 
   new solutions

- Draw from a uniform 
   distribution in (17)
- Randomly choose j and k  
   among all the solutions
- Invoke self-pollination 
  in (16) for generating 
  new solutions

 
 

Fig. 3 Flow diagram of FPA algorithm. 

 
3.2 FPA-Based MVRP Optimization  
The FPA algorithm was applied to solve the MVRP 
problems with the time constraint as follows. 
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Step-0 Define the objective function f(•) in (6) 
with constraint functions in (7)-(13). 
Generate n flowers randomly and 
evaluate them via f(•). Select the best 
solution g* among initial flowers giving 
the least value of f(•). Define a switch 
probability p = 0.2 (or 20%). Set the 
maximum generation (MaxGen) as the 
termination criteria (TC) and a 
generation counter (Gen = 1). 

Step-1 If Gen  MaxGen, go to Step-2. 
Otherwise, go to Step-4. 

Step-2 If rand > p, calculate L as a random 
with Lévy-flight distribution in (15) and 
employ the global pollination in (14) to 
create a new solution x. Otherwise, 
calculate  as a random with uniform 
distribution within [0, 1] in (17). Select 
xj and xk randomly among all current 
solutions. Activate the local pollination 
in (16) to create a new solution x. 

Step-3 Update solution. If f(x) < f(g*), set g* = 
x and update Gen = Gen+1. Otherwise, 
unchanged g* and update Gen = Gen+1. 
After that, go back to Step-1 for next 
generation. 

Step-4 Report the best solution found and 
terminate the search process. 

 
 

4 Results and Discussions 
To solve the MVRP problems with the time 
constraint, the FPA algorithms were coded by 
MATLAB version 2017b run on Intel(R) Core(TM) 
i5 -3470 CPU@3.60GHz. For the time constraint in 
(13), Tmax = 8 hr. is assumed as the working time a 
day of all vehicles. With the average vehicles’ speed 
of 80 Km/hr., this means that the overall distance of 
each vehicle cannot be longer than 640 Km/day.  50 
trial-runs are executed to search for the best 
solution. For a fair comparison, in each iteration a 
number of solution population of GA, TS and PSO 
is set as a same number of solution population of 
FPA. Setting parameters of GA, TS, PSO and FPA 
for comparison is detailed as follows. 

For GA: 
 No. of offspring (population) = 50 
 Crossover = 0.8 (80%) 
 Mutation = 0.2 (20%) 
 TC : MaxGen = 10,000 

For TS: 
 No. of neighborhoods (population)  = 50 
 Search radius = 20% 
 TC : MaxIter = 10,000 

For PSO: 
 No. of particles (population) = 50 
 Cognitive learning rate = 2.0 
 Social learning rate = 2.0 
 Inertia weight min = 0.4 and max = 0.9 
 TC : MaxGen = 10,000 

For FPA [28-30]: 
 No. of flowers n   = 50 
 Switching probability p = 0.2 (20%) 
 TC : MaxGen = 10,000 

 

 
 

Fig. 4 Optimal tour of Entry#1 (Eil51) by GA. 
 

 
 

Fig. 5 Optimal tour of Entry#1 (Eil51) by TS. 
 

The optimal solutions of the Entry#1 (Eil51) 
obtained by the GA, TS, PSO and FPA are depicted 
in Fig. 4 - 7, where  stands for the common depot. 
Results of the MVRP optimization obtained by GA, 
TS, PSO and FPA including the optimal solutions, 
the search times consumed and numbers of vehicles 
are summarized in Table 2 and Fig. 8. From results, 
the FPA can yield the optimal solutions for all 
MVRP problems according to the time constraint.  
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Table 2 Optimal solutions of MVRP problems obtained by GA, TS, PSO and FPA. 

Entries Names 
Optimal  

Solutions (Km.) 
No. of 

Vehicle m 
GA 

(Km.) 
TS 

(Km.) 
PSO 

(Km.) 
FPA 

(Km.) 
Entry#1 Eil51 426 4 476.43 471.59 468.27 462.29 
Entry#2 Birlin52 7,542 12 7,683.62 7,604.34 7,585.41 7,552.01 
Entry#3 St70 675 5 696.27 688.33 682.14 678.42 
Entry#4 Rat99 1,211 8 1,401.24 1,356.17 1,264.93 1,221.45 
Entry#5 Rd100 7,910 14 8,105.78 8,017.96 7,998.38 7,936.53 

 
Fig. 8 Search time consumed of MVRP problems by GA, TS, PSO and FPA. 

Entry#1 Entry#2 Entry#3 Entry#4 Entry#5

GA 189.48 226.64 308.07 355.63 434.81

TS 121.15 176.58 159.32 236.02 359.47

PSO 87.14 101.57 118.86 175.31 214.47

FPA 47.24 58.36 75.54 95.18 104.47
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Fig. 6 Optimal tour of Entry#1 (Eil51) by PSO. 
 

 
 

Fig. 7 Optimal tour of Entry#1 (Eil51) by FPA. 

 
 
Fig. 9 Convergent rates of Entry#1 (Eil51) by FPA. 

 

 
 

Fig. 10 Optimal tour of Entry#1 (Eil51) by FPA            
(5 vehicles). 
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In average, the FPA gives the superior solutions to 
PSO, TS and GA, respectively. Moreover, it can be 
observed that the FPA spend less time consumed 
than the PSO, TS and GA, respectively, as can be 
seen in Fig. 8.  

The convergent rates of the global minimum 
finding of the Entry#1 (Eil51) problem optimized by 
the FPA are depicted in Fig. 9. Those of other 
problems are omitted because they have a similar 
form to that of Entry#1 in Figure 9. From Fig. 9, it 
can be visualized that the FPA has the strong 
robustness for the global minimum finding with the 
different randomly initial solutions over 50 trial-
runs. In addition, to demonstrate the effectiveness of 
the FPA for solving MVRP with 5 vehicles (m = 5) 
over the Entry#1 (Eil51) problem as an example, the 
additional result is depicted in Fig. 10. 

 
 

5 Conclusions 
In this paper, the application of the FPA to solve the 
MVRP problem with the time constraint based on 
the modern optimization has been proposed. The 
MVRP problem could be modeled by the general 
MTSP. In this work, the FPA has been applied to 
solve the MVRP problem consisting of 50-100 
destinations with the time constraints. The FPA has 
been tested against five selected benchmark MVRP 
problems. Results obtained by the FPA have been 
compared with those obtained by GA, TS and PSO. 
As results, the FPA can yield optimal solutions for 
all five selected MVRP problems superior to PSO, 
TS and GA, respectively, with shorter total distance 
and computational time consumed. This can be 
noticed that the FPA is one of the most powerful 
metaheuristic optimizers that can be alternatively 
used to solve the MVRP problems with the time 
constraints. For future research, vehicle routing 
balancing problems (VRBP) will be investigated in 
order to balance the work load of each vehicle in the 
fleet with non-uniform capacity. Multiple-depots 
multiple-vehicle routing problems (MD-MVRP) 
will be studied by novel metaheuristic optimizers. 
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